Mesolimbic pathway From Wikipedia, the free encyclopedia

Standard

Mesolimbic pathway

From Wikipedia, the free encyclopedia
 
 

Mesolimbic dopaminergic and serotonergic pathways.

The mesolimbic pathway is a dopaminergic pathway in the brain. The pathway begins in the ventral tegmental area of the midbrain and connects to the limbic system via the nucleus accumbens, the amygdala, and thehippocampus as well as to the medial prefrontal cortex. The mesolimbic dopamine system is widely believed to be a “reward” pathway, but that hypothesis is not universally accepted.[1]

Anatomy[edit]

The following structures are considered to be a part of the mesolimbic pathway:

Ventral Tegmental Area
The ventral tegmental area (VTA) is a part of the midbrain. It consists of dopaminergic, GABAergic, and glutamatergic neurons.[2]The VTA communicates with the nucleus accumbens via the medial forebrain bundle.
Nucleus Accumbens
The nucleus accumbens is found in the ventral striatum and is composed of medium spiny neurons.[3][4] It is subdivided into limbic and motor subregions known as the shell and core.[2] The medium spiny neurons receive input from both the dopaminergic neurons of the VTA and the glutamatergic neurons of the hippocampus, amygdala, and medial prefrontal cortex. When they are activated by these inputs, the medium spiny neurons’ projections release GABA onto the ventral pallidum.[2] The release of dopamine in this structure drives the mesolimbic system.
Amygdala
The amygdala is a large nuclear mass in the temporal lobe anterior to the hippocampus. It has been associated with the assignment of emotions, especially fear and anxiety. There are two, one in each temporal lobe, and their functions may belateralized.
Hippocampus
The hippocampus is located in the medial portion of the temporal lobe. It is known for its association with double memory (i.e., bothprocedural and declarative memory).
Bed Nucleus of the Stria Terminalis

Controversy over mesolimbic dopamine function[edit]

There is some controversy regarding dopamine’s role in the reward system. Three hypotheses—hedonia, learning, and incentive salience—have been proposed as explanations for dopamine’s function in the reward system.[1] The hedonia hypothesis suggests thatdopamine in the nucleus accumbens acts as a ‘pleasure neurotransmitter‘. In the late 1970s, it was found that some drugs of abuse involved dopamine activity, in particular in the nucleus accumbens, to cause the “high” or euphoric state. However, not all rewards or pleasurable things involve activation of the reward system, which may suggest that the mesolimbic pathway may not be just a system that works merely off enjoyable things (hedonia).[5] Learning, on the other hand, deals with predictions of future rewards and association formation. Studies have shown that rats that had their ventral tegmental area and nucleus accumbens destroyed do not lose their learning capabilities, but rather lack the motivation to work for a reward.[1] Incentive salience (wanting) stands out as a possible role for dopamine, as it regards this molecule as being released when there is a stimulus worth working hard for, thus making an individual work to get it. This is one of the reasons that dopamine transport has been extensively studied in ADD and ADHD. It is now widely understood that most people suffering from some form of attention deficit disorder most likely lack dopamine stimulation. This also explains why dopamine reuptake inhibitors and stimulants often dramatically improve symptoms of attention disorders. In self-administration studies, animals have been trained to give an operant response (lever press, nose poke, wheel turn, etc.) in order to obtain either a drug or a mate. It has been shown that the animals will continue to perform the required task until the reward is received, or fatigue sets in.[2][5]

Clinical significance[edit]

Since the mesolimbic pathway is shown to be associated with feelings of reward and desire, this pathway is heavily implicated inneurobiological theories of addictionschizophrenia, and depression.[6][7][8] Drug addiction, the loss of control over drug use or the compulsive seeking and taking of drugs despite adverse consequences, with the four major classes of abused drugs (psychostimulants, opiates, ethanol, and nicotine) are due to increased dopamine transmission in the limbic system-each by different mechanisms.[2][9]Like drug addiction, schizophrenia and depression have similar structural changes with dopamine transmission.[6]

Other dopamine pathways[edit]

The other dopamine pathways are:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s